A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) Book + PRICE WATCH * Amazon pricing is not included in price watch

A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) Book

This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates such as classical local averaging estimates including kernel, partitioning and nearest neighbor estimates, least squares estimates using splines, neural networks and radial basis function networks, penalized least squares estimates, local polynomial kernel estimates, and orthogonal series estimates. The emphasis is on distribution-free properties of the estimates. Most consistency results are valid for all distributions of the data. Whenever it is not possible to derive distribution-free results, as in the case of the rates of convergence, the emphasis is on results which require as few constrains on distributions as possible, on distribution-free inequalities, and on adaptation. The relevant mathematical theory is systematically developed and requires only a basic knowledge of probability theory. The book will be a valuable reference for anyone interested in nonparametric regression and is a rich source of many useful mathematical techniques widely scattered in the literature. In particular, the book introduces the reader to empirical process theory, martingales and approximation properties of neural networks.Read More

from£N/A | RRP: £85.50
* Excludes Voucher Code Discount Also available Used from £N/A
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.

Would you like your name to appear with the review?

We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.

All form fields are required.