Classifier Learning for Imbalanced Data: A Comparison of kNN, SVM, and Decision Tree Learning Book + PRICE WATCH * Amazon pricing is not included in price watch

Classifier Learning for Imbalanced Data: A Comparison of kNN, SVM, and Decision Tree Learning Book

This work discusses the theoretical abilities ofthree commonly used classifier learning methods andoptimization techniques to cope with characteristicsof real-world classification problems, morespecifically varying misclassification costs,imbalanced data sets and varying degrees of hardnessof class boundaries. From these discussions a universally applicableoptimization framework is derived that successfullycorrects the error-based inductive bias of classifierlearning methods on image data within the domain ofmedical diagnosis. The framework was designed considering several pointsfor improvement of common optimization techniques,such as the modification of the optimizationprocedure for inducer-specific parameters, themodification of input data by an arcing algorithm,and the combination of classifiers according tolocally-adaptive, cost-sensitive voting schemes. The framework is designed to make the learningprocess cost-sensitive and to enforce more balancedmisclassification costs between classes. Results onthe evaluated domain are promising, while furtherimprovements can be expected after some modificationsto the framework.Read More

from£45.00 | RRP: £45.00
* Excludes Voucher Code Discount Also available Used from £124.39
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.

Would you like your name to appear with the review?

We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.

All form fields are required.