Financial Markets in Continuous Time (Springer Finance) Book + PRICE WATCH * Amazon pricing is not included in price watch

Financial Markets in Continuous Time (Springer Finance) Book

In modern financial practice, asset prices are modelled by means of stochastic processes, and continuous-time stochastic calculus thus plays a central role in financial modelling. This approach has its roots in the foundational work of the Nobel laureates Black, Scholes and Merton. Asset prices are further assumed to be rationalizable, that is, determined by equality of demand and supply on some market. This approach has its roots in the foundational work on General Equilibrium of the Nobel laureates Arrow and Debreu and in the work of McKenzie. This book has four parts. The first brings together a number of results from discrete-time models. The second develops stochastic continuous-time models for the valuation of financial assets (the Black-Scholes formula and its extensions), for optimal portfolio and consumption choice, and for obtaining the yield curve and pricing interest rate products. The third part recalls some concepts and results of general equilibrium theory, and applies this in financial markets. The last part is more advanced and tackles market incompleteness and the valuation of exotic options in a complete market.Read More

from£43.99 | RRP: £67.99
* Excludes Voucher Code Discount Also available Used from £35.97
  • 3540434038
  • 9783540434030
  • Rose-Anne Dana, Monique Jeanblanc
  • 26 November 2002
  • Springer
  • Hardcover (Book)
  • 330
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.

Would you like your name to appear with the review?

We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.

All form fields are required.