The Jacobson Radical of Group Algebras (Mathematics Studies) Book + PRICE WATCH * Amazon pricing is not included in price watch

The Jacobson Radical of Group Algebras (Mathematics Studies) Book

Let G be a finite group and let F be a field. It is well known that linear representations of G over F can be interpreted as modules over the group algebra FG. Thus the investigation of ring-theoretic structure of the Jacobson radical J(FG) of FG is of fundamental importance. During the last two decades the subject has been pursued by a number of researchers and many interesting results have been obtained. This volume examines these results.The main body of the theory is presented, giving the central ideas, the basic results and the fundamental methods. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, thus familiarity with basic ring-theoretic and group-theoretic concepts and an understanding of elementary properties of modules, tensor products and fields. A chapter on algebraic preliminaries is included, providing a survey of topics needed later in the book. There is a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.Read More

from£43.99 | RRP: £94.00
* Excludes Voucher Code Discount Also available Used from £17.59
  • 0444701907
  • 9780444701909
  • Gregory Karpilovsky
  • 1 April 1987
  • Elsevier Science Ltd
  • Hardcover (Book)
  • 532
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.

Would you like your name to appear with the review?

We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.

All form fields are required.