The Theory of Partitions (Encyclopedia of Mathematics and its Applications) Book + PRICE WATCH * Amazon pricing is not included in price watch

The Theory of Partitions (Encyclopedia of Mathematics and its Applications) Book

The partitions of a number are the ways of writing that number as sums of positive integers. For example, the five partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. This book considers the many theoretical aspects of this subject, which have in turn recently found applications to statistical mechanics, computer science and other branches of mathematics.Read More

from£49.98 | RRP: £27.99
* Excludes Voucher Code Discount Also available Used from £48.39
  • Product Description

    This book develops the theory of partitions. Simply put, the partitions of a number are the ways of writing that number as sums of positive integers. For example, the five partitions of 4 are 4: 3+1, 2+2, 2+1+1, and 1+1+1+1. Surprisingly, such a simple matter requires some deep mathematics for its study. This book considers the many theoretical aspects of this subject, which have in turn recently found applications to statistical mechanics, computer science and other branches of mathematics. With minimal prerequisites, this book is suitable for students as well as researchers in combinatorics, analysis, and number theory.

  • 052163766X
  • 9780521637664
  • George E. Andrews
  • 28 July 1998
  • Cambridge University Press
  • Paperback (Book)
  • 272
  • Reprint
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.

Would you like your name to appear with the review?

We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.

All form fields are required.