Topics in Geometric Group Theory (Chicago Lectures in Mathematics) Book + PRICE WATCH * Amazon pricing is not included in price watch

Topics in Geometric Group Theory (Chicago Lectures in Mathematics) Book

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples.The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.Read More

from£N/A | RRP: £23.00
* Excludes Voucher Code Discount Also available Used from £N/A
  • 0226317218
  • 9780226317212
  • PDL Harpe
  • 11 October 2000
  • Chicago University Press
  • Paperback (Book)
  • 310
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.

Would you like your name to appear with the review?

We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.

All form fields are required.